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Analysis is undertaken of steady-state natural convection heat transfer in 
rectangular enclosures, that are vertically divided into a region filled wi th a fluid 
and another filled with a fluid-saturated porous medium. The two are separated by 
an impermeable wall and the vertical and horizontal boundaries are considered to 
be isothermal and adiabatic, respectively. The objective is to establish the heat 
transfer characteristics for enclosures containing different amounts of porous 
material. The f low in the porous region is modelled by a modified Darcy's law 
where Brinkman's extension is incorporated to allow the no-sl ip condit ion to be 
satisfied. A finite-difference scheme was used to numerically solve the field 
equations in the two regions. It was found that there were situations where heat 
transfer could be minimized by partially f i l l ing instead of entirely f i l l ing an 
enclosure wi th a porous medium. Results obtained in this study are directly 
applicable to the design of insulation systems, suggesting that a better optimized 
insulation usage is possible. 
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One effective method to suppress convective heat transfer 
in an enclosure is to fill it with a porous material. The solid 
matrix usually occupies only a small fraction of the 
enclosed space; but because of its very fine structure, the 
total surface available for frictional resistance is large 
enough to significantly retard the fluid motion. An 
example of this can be found in home insulation where the 
air space between wall panels is filled with a light-weight 
fibreglass insulation ( ,-~ 10 kg/m3). 

In many situations, it is common to entirely fill the 
enclosure with a porous material when insulation is 
desired. The aim of this work is to study the effect of 
partially rather than completely filling an enclosure with a 
porous insulation. From an engineering standpoint, the 
motivation for performing such an analysis is obvious. If 
the insulation usage is better optimized, the potential 
savings in capital as well as operating costs of the 
insulation system could be appreciable. The particular 
problem considered here is idealized as 2-D and 
rectangular with isothermal vertical and insulated 
horizontal boundaries (see Fig 1). The enclosed space is 
considered to be vertically divided into two regions with 
one filled with a porous medium. An impermeable surface, 
simulating the paper-backing or the vapour barrier of the 
insulation, separates the two regions. Thus, in effect the 
problem examined is one of two enclosures sharing a 
common vertical boundary. 
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A review of the literature related to heat transfer in 
rectangular enclosures shows that previous analyses can 
be classified mainly into three categories: (i) those that 
concern fluid-filled enclosures '-7, (ii) those that concern 
porous-filled enclosures 7-15 and (iii) those that consider a 
partition separating either two fluid media 16-1v or two 
porous media 18,~ 9. The present problem does not fall into 
any of these three classes of problems. But in the limiting 
cases of zero insulation thickness and an enclosure 
entirely filled with an insulation, the problem would 
belong to either one of the first two categories described 
above. 

Mathematical formulation 
Shown in Fig 1 is the geometry of the problem under 
consideration. The region between the hot boundary and 
the impermeable partition is filled with a porous medium 
saturated with the same fluid that occupies the rest of the 
enclosure. For  constant properties (except the density in 
the buoyancy term) and steady-state free convection, the 
equations governing the conservation of mass, 
momentum and energy in each of the two regions have 
been well established 7. Instead of repeating all the 
equations in their dimensional form, we shall only cover 
those that are different from the traditional formulation v 
and present the final dimensionless equations. It should 
be noted that for porous media comprised of loose-fill 
materials such as packed-glass spheres, the porosity 
variation near a solid surface may have a significant effect 
on energy transfer and the constant properties 
assumption may need to be modified accordingly 2°. 

In the present analysis Brinkman's extension 2 ~ has 
been incorporated in the conventional Darcy formulation 
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for momentum transfer in a porous medium. 
modified Darcy's law can be written as: 

The 

Ill ~ _ 8Pp [82~p (~2/~p "~ 
~: p -  - c~.~ +/~p~ ~ 2 -  + 8 ~ - )  (1) 

/Af_ 63Pp f(~2tS p (~2/~p ",~ ~'T. 
Kt)p=-- (~fi -l-l~pt~'-i-~2 )+pg]J ( p-- rm) (2) 

where the symbols are defined under Notation. The bars 
distinguish the respective variables from their 
dimensionless counterparts to be used later. It is seen that 
Brinkman's extension includes the shear stress terms in 
the original Darcy's law allowing the no-slip boundary 
condition to be satisfied. The reason for using Brinkman's 
extension is because the present analysis is related to 
another investigation being conducted by the authors. 
This other investigation considers no solid surface 
separating the porous and the fluid regions. That is, the 
fluid in the porous side can flow to the fluid side and vice 
versa. In such a situation, Brinkman's extension may be 
necessary for the shear stress matching condition at the 
porous-fluid interface to be satisfied. To allow a more 
compatible comparison of the results in the future, it was 
decided to have a consistent formulation for both the 
present problem with a solid interface and the other 
problem without a solid interface. 

It should be noted that /tp and #f are generally 
different from one another. However, the simplification of 
treating ~ =#f has been found acceptable for many 
situationsfl 24. Adopting this simplification, using the 
following dimensionless variables: 

:~ f T~-T~ T~-T~ 
x = 5 '  Y=d'  0°= T h - T~' 0 t -  Th - T~ 

Sod ~pd ard vfd 
U p = - - ,  [lp= , llf~----- Uf~-~-- 

(Xp 0~p (~f (~f 
pgfl ( T h -- T~)~cd pgfl( T h -- Tc)d 3 

Ra  o -  , Ra  = 
#fO¥ #fO~f 

Da = ~ ,  Pr  = - -  
poq 

we transform Eqs (1) and (2), and the rest of the governing 
equations 7 to the following dimensionless form in terms of 
the stream functions: 

Porous region 

+ = D a  + 2 0 7 ~ + ~ y 4 ) - R a o ~  x 

(3) 
~/p ~Op ~/p (~Op ~20p ~20p 
(~y Ox Ox 0 y -  (~X 2 } (~y2 (4) 

Fluid region 

F 
~x 3 ~y c~x c~x 2 (~y 0y c~x t~y 2 dx c~y 3 

] ~4 ~4 ¢f ..[_ 04 ~lf ~ prOO f = p , ,  ~ h r  + 
\ ~x~ G~-Tr~B a - ? - ) -  Ra 0x 151 

t~lpf ~0f t~lpf ~0f ~20f ~20f 
0y 0x 0x c~y 0x2 +~y2 (6) 

The dimensionless parameters Rao, Ra,  Da and Pr are 
respectively, the modified Rayleigh number, the Rayleigh 
number, the Darcy number and the Prandtl number. The 
dimensionless variables shown above are chosen such 
that Eqs (3) (without Brinkman's extension) and (4), and 
Eqs (5) and (6) are identical to those for porous-filled 7,9 
and fluid-filled 7 enclosures, respectively. 

The boundary conditions for the present problem are: 

at x = 0  

at x = l  

at y=0 ,  A 

0p=l ,  ep=0,  ~ x  p=0 (7) 

ag, r 
0f = 0  , ef = 0  , ~ X = 0  (8) 

80p O, 
~-y= ¢p=0, ~ f = 0  for x < S  (9) 

~0-~f=0'c~y e l=0 ,  ~yf=0  f o r x > S  (10) 

Notat ion 

A Aspect ratio 
d Width of the enclosure 
g Gravitational acceleration 
kr Thermal conductivity of the fluid 
kp Thermal conductivity of the porous medium 
L Height of the enclosure 
M Number of intervals in the porous region in the x 

direction 
N Number of intervals in the fluid region in the x 

direction 
N u  Nusselt number, see definition in Eq (14) 
P Perturbation pressure, also number of intervals 

in the y direction 
Pr Prandtl number 
R R c f o r x < < . S a n d u n i t y f o r x > ~ S  
Re Ratio of kf to  kp 
Ra Rayleigh number 
Rao Modified Rayleigh number 
s Width of the porous region 
S Dimensionless width of the porous region 
T Temperature 

u 

/) 

x 

Y 

0 
K 
~f 

P 
O 

Horizontal velocity 
Dimensionless horizontal velocity 
Vertical velocity 
Dimensionless vertical velocity 
Horizontal coordinate 
Dimensionless horizontal coordinate 
Vertical coordinate 
Dimensionless vertical coordinate 
Thermal diffusivity 
Thermal expansion coefficient 
Dimensionless temperature 
Permeability 
Viscosity of the fluid 
Effective viscosity of the porous medium 
Density of the fluid 
Dimensionless stream function 

S u b s c r i p t s  
c Cold wall 
f Fluid 
h Hot wall 
m Mean 
p Porous medium 
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Fig 1 Enclosure partially filled with a porous medium: (a) 
physical geometry," (b) grid pattern 

where A and S are defined as: 

L s 

s d 

The appropriate 
interface are: 

matching conditions at the solid 

C~0p Rc c~0r 
at x = S 0p = 0f, ~-x = t?x 

~,p Oq/f 
~Op=~f=0, t3x Ox - 0  (11) 

where Re-- kf/kp. It should be noted that Rao, Ra, Da and 
Re are related by: 

Rao =Ra Da R¢ (12) 

Therefore, only three of the parameters appearing in Eq 
(12) are independent. 

Method of solution 

In view of the mathematical complexity involved in the 
equations, a numerical solution was attempted. The entire 
enclosure was divided to a (M + N) x P grid with M and N 
corresponding to the numbers of intervals in the porous 
and fluid sides, respectively, in the x direction (see Fig lb). 
Central-differences with second order accuracy were used 
to transform the governing equations to a set of algebraic 
equations. To maintain the same order of numerical 
accuracy, one-sided three point differences were employed 
at the solid boundaries. The procedure was iterative in 
nature where the stagnant conditions were taken as the 
initial state. Both the stream function and the temperature 
were iterated at every grid point until convergence was 
achieved. 

The finite-difference forms of Eqs (3) and (5) were 
used to solve for the stream functions at locations at least 
two grid points away from any solid surfaces. For  the 
points at and next to a boundary, the zero stream function 
and no-slip boundary conditions were applied, 
respectively. As far as temperature was concerned, the 
finite-difference forms of Eqs (4) and (6) were employed for 
all interior grid points while the thermal conditions 
specified in Eqs (7) to (10) were applied along the enclosure 
boundaries. Combining the thermal matching conditions 
shown in Eq (11) resulted in an algebraic equation that 
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allowed the solid interface temperature to be determined 
in terms of the immediate neighbouring points in both the 
fluid and porous regions. 

The convergence criterion was set by requiring the 
change of both the stream functions and temperatures at 
all grid points to be less than 0.01%. Other than those 
specified, the results reported were obtained with a 
(16+ 16)x 16 grid. Test cases were conducted with finer 
grid points to ensure that the results would not change by 
more than 2.5% upon further reduction in grid size. The 
results for the test cases will also be presented in the next 
section. 

Results and discussion 

In this work the governing parameters used in the 
calculations are intended to cover applications involving 
the use of highly porous (porosity ~> 95%) insulations in 
moderate temperatures (Tin "" 300 K, (Th -- T~) ~< 30 K). The 
Pr used throughout was 0.7 which is that for air at 300 K. 
Heat transfer results are presented as Nusselt number Nu 
defined as: 

actual head transfer 

N u - h e a t  transfer by conduction when the entire 

enclosure is filled with the fluid alone 

In terms of the variables used, it is: 

) Nu= - - -  AR ~x - Ou dy 

where: 

R = R  c, 

R- - I ,  

(13) 

(14) 

0=0p, u=up f o r x < . S  

0 = 0 f ,  U = U f  for x>~S 

Normally, Nu is defined with the denominator equal to 
the conductive heat transfer across the actual enclosure. 
But since here we are considering enclosures that have 
physically different geometries (corresponding to different 
values of S), it is more suitable to have all the Nu defined 
on the same basis, as in Eq (13), to facilitate comparisons 
of results. A simple analysis can show that in the 
conduction limit, the present definition of Nu gives: 

Nu= 1/[1 +S(R¢-  1)] (15) 

Therefore only for the special case of Rc = 1 will the 
present and the conventional Nu have the same limiting 
value of one. All the Nu presented were evaluated at x = 0 
although Nu at both the hot and cold walls were 
computed in the analysis. Typically, the Nu determined at 
both walls differ by no more than 2%. 

Given in Tables 1 and 2 are some results 
illustrating the effect due to different grid sizes. Most of the 
results obtained with a (16+ 16) × 16 grid did not change 
by more than 2.5% upon incrementing each of the grid 
intervals by 4. For  cases where Nu changed by more than 
2.5%, more tests were performed by increasing the grid 
intervals further. The tests show that there are cases which 
will require a (20+20)x  20 grid for the results to be 
considered as grid-size independent. Also included in 
Tables 1 and 2 are some numerical results reported by 
Raithby and Wong 6 for the case ofS = 0. All of the results 
that did not change by more than 2.5% upon further 
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Table  1 Ef fect  of  grid size for  Ra= l  x l 0  4 and D a = l  x l 0  -3 

S Grid pattern A = 5 A = 10 

Nu 

A=20 

0 (0+ 16) x 16 1,917 1.592 
(0+20) x20 1.945 1.46" 1.614 1.38 

(2.00)1" (1.67) 

0.1 (16+ 16) x 16 1.565 
(20+20) x20 1.586 1.34 

0.2 (16 + 16) x 16 1.309 
(20+20) x20 1.318 0.69 

0.3 (16+ 16) x 16 1.1 37 
(20+20) x20 1.141 0.35 

0.4 (16+ 16) x 16 1.044 
(20+ 20) x 20 1.047 0.29 

0.5 (16+ 16) x 16 1.010 1.003 
(20+ 20) x 20 1.011 0.10 1.003 0.00 

0.6 (16+ 16) x 16 1.003 
(20+ 20) x 20 1.003 0.00 

0.7 (16+ 16) x 16 1.003 
(20+ 20) x 20 1.003 0.00 

0.8 (16+ 16) x 16 1.005 
(20+20) x 20 1.006 0.10 

0.9 (16+ 16) x 16 1.010 
(20+20) x20 1.012 0.20 

1.0 (16+0) x 16" 1.017 1.006 
(20+0) x20 1.019 0.20 1.007 0.10 

1.307 
1.321 1.07 

(1.37) 

1.001 
1.001 0.00 

1.002 
1.002 0.00 

* Columns to the right o f  Nu values contain the percent change from the preceding grid size in each case 
t The row o f  Nu values in parentheses is from Raithby and Wong 6 

3.00 -- 
reduction in grid size agree with the cited results ° to 
within 6%. For  most cases, the agreement is better than 
4%. nc 

The results in Fig 2 are for Rao of the order of 10- 2 ~ - 03 
It is clear that most of the reduction in heat transfer occurs 2.5o ~ -, -0.9 
when S~<0.6. Depending on Rc, heat transfer may +-1.0 
increase, decrease or remain the same when S is further Y -2.o 
increased. This is because, for Rao as low a s  10 - 2 ,  natural 
convection in the porous medium is negligible 7. In 2.00 
addition, fluid circulation in the fluid region is suppressed 
as the fluid region is becoming more slender. Hence, heat 
transfer takes place largely by conduction once S has 
reached 0.6. IfR~ < 1 and S is further increased, more of the 
fluid in the fluid region is replaced with a material that has 1.5o 
a higher thermal conductivity and results in an increase in 
heat transfer. A statement in the opposite sense can be 
used to explain the monotonic decreasing trend for Rc > 1. k 
For  Rc = 1, the fluid and the porous medium are identical 1 . 0 o  ~ ' - ~ - -  
as far as conduction is concerned. Thus, there is no change 
in Nu when S is roughly greater than 0.6. The results for 
Rc ~< 1 are particularly relevant to insulation applications 
because most porous insulations have an Rc either smaller 
than or close to one. It is obvious that the most desirable 0.50 , , 
insulating effect can be achieved by partially filling instead 0.00 0.25 0.50 
of entirely filling the enclosure with a porous material, s 

Presented in Fig 3 are the vertical velocity and for A = 10, 
temperature distributions for Re = 1 and the same Ra and 

Fig 2 Nusselt number 
Da = 1 x 10- 7 

1 ! 

.75 1.00 

R a = l x 1 0 5  and 
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Table 2 Effect  of  grid size for  R a  = 1 x 10 5 and D a =  1 x 1 0  -a  

Nu 

S Grid pattern A=5 A=10 A=20 

0 (0+ 16) x 16 3.425 2.994 
(0+20)x20 3.524 2.89* 0.039 1.50 
(0+24) x24 3.580 1.59 3.067 0.92 

(3.68)1" (3.13) 

0.1 (16+ 16) x 16 2.498 
(20+20) x20 2.551 2.12 

0.2 (16+ 16) x 16 1.969 
(20+20) x20 2.001 1.63 

0.3 (16+ 16) x 16 1.637 
(20+20) x20 1.657 1.22 

0.4 (16+ 16) x 16 1.417 
(20+20) x20 1.432 1.06 

0.5 (16+ 16) x 16 1.264 1.128 
(20+20) x20 1.278 1.11 1.138 0.89 

0.6 (16+ 16) x 16 1.172 
(20+20) x20 1.186 1.19 

0.7 (16+16)×16 1.169 
(20+20) x20 1.185 1.37 

0.8 (16+ 16) x 16 1.260 
(20+20) x20 1.283 1.83 

0.9 (16+ 16) × 16 1.426 
(20+ 20) x 20 1.460 2.38 

1.0 (16+ 0) × 16 1.660 1.316 
(20+ 0) x 20 1.712 3.13 1.350 2.58 
(24+0) x24 1.749 2.16 1.374 1.78 
(32+0)x32 1.770 1.20 1.390 1.16 

2.500 
2.544 1.76 
2.562 0.71 

(2.66) 

1.050 
1.055 0.48 

1.122 
1.143 1.87 
1.1 58 1.31 

* Co/umns to the right of  Nu va/ues contain the percent change from the preceding grid size in each case 
t The row of  Nu va/ues in parentheses is from Raithby and Wong 6 
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a 

100 

v 

1 

Fig 3 Distributions at mid-height o f  the enclosure for  
A = 10, Ra = 1 x 105, Da = 1 x 10-  7 and R~ = 1: (a) vertical 
velocity; (b) temperature 

Da as in Fig 2. The effect on convection suppression can 
also be seen in this figure. When S is increased from zero, 
there is no fluid motion in the region occupied by the 
porous medium and the velocity in the fluid side decreases 
substantially. The temperature distribution is becoming 
more linear indicating heat transfer is approaching the 
conduction limit. The profiles show that convection is 
already negligible when S is somewhere between 0.5 and 
0.75. 

The N u  for Rc ~< 1 and Rao of the order of 1 0  2 a r e  

given in Fig 4. The results for S -- 1 were obtained with a 
(20+20) x 20 grid which was found necessary for the 
results not to change more than 2.5% upon further 
reduction in grid sizes. It is seen that all the results 
including those for Rc= l  exhibit a minimum around 
S=0.65. An examination of the vertical velocity and 
temperature distributions (see Fig 5) reveals that when 
Rao is of the order of 10  2, there is convection in both the 
porous and the fluid regions. The fluid motion is clearly 
minimized when S is between 0.5 and 1. This is consistent 
with what is observed in Fig 4. 

Figs 6 to 9 form a series of graphs giving Nu for 
different Ra, Da and A. A shorter enclosure and a larger 
Ra have the same effect of increasing heat transfer. The 
value of S beyond which there is either no change or 
increase in heat transfer is larger for lower A and higher 
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3.50 _ 

3.00 

RC 
E) - 0 . 8  

,*- - 0 . 9  

+ - 1.0 

model. Table 3 shows a comparison between the 
Brinkman results for S = I  and those reported by 
Shiralkar et al ~4 using the pure Darcy formulation. The 
results indicate that the Brinkman N u  incfeases as Da 
decreases and approaches an asymptotic value. This trend 
has also been observed by Tong and Subramanian 2s in an 

2,25 

2.50 

2.00 

1 . 5 0  

1 ° ° I  ' ' I ' , 
0.00 .25 0.50 0.75 1.00 

S 

Fig 4 Nusselt number for  A = IO, R a = l  x lO s and 
D a =  1 × 10 -3 
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v: !iii 
125  1 
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t I t = - - - - 1 - 6 2 5  
0 x 1 

a 
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1 

0 
0 

~ I I I ;1 

! , , 

x I 

b 

Fig 5 Distributions at mid-height o f  the enclosure for  
A = 10, Ra = 1 x 105, Da = 1 x 10- 3 and R c = 1 : (a) vertical 
velocity," (b ) temperature 

Ra. From these figures, it is again seen that there is no 
need to fill the entire enclosure to achieve the best 
insulating result. For the same reason mentioned in the 
preceding paragraph, a (20+20)x 20 grid was used to 
obtain the results for S = 0  and A =5  in Figs 7 and 9, and 
those for S = 1 in Fig 9. 

Since the Brinkman-extended Darcy model has 
been used to generate the results, it is of interest to see how 
the results would compare with those from the pure Darcy 

2.00 

A 

O - 5.0 

A _ 1 0 . 0  

+ - 20.0 

1 . 7 5  

1 . 5 0  

1 . 2 5  

1 . 0 0  _'2 - , ~ : 
, , ;. 

0.00 0.25 0.50 0.75 00 
S 

Fig 6 Nusselt number for  Ra = 1 x 10 4, Da = 1 x 10-7 
and Re=l ,  (Rao=l  x 10 -3 ) 

4.00 

3.50 

3.00 

2.50 

2.00 

1 . 5 0  

1 . 0 0  

A 

O - 5.0 

'= - 1 0 . 0  

+ - 20.0 

0.00 ' 0.25 0.50 0.75 1.00 
S 

Fig 7 Nusselt number for  R a = l x 1 0  5 , D a = l x l 0 - 7  
and R~ = 1, (Ra o = 1 x 10 -2) 
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1.50 

1.25 
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Fig 8 Nusselt number for Ra = 1 x 10 4, Da = 1 x 10-3 
and R~ = 1, (Rao = 10) 

Table 3 Brinkman's e f fect  for S=1 
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4.00 

3.50 t 

3.00 

:~ 2.50 

2.00 

1.50 

1.00 

0.00 ~ 0.25 0.50 = 0.75 1.00 
S 

Fig 9 Nusselt number for Ra = 1 x 10 5, Da = 1 x 10- 3 
and R~ = 1, (Rao = 1 x 10 2) 

A Ra o 

Nu 

Present, with Brinkmann's extension* 
D a = l  x l O  -3 1 x lO  -4 1 x lO -5 

Pure Darcy formulation 
1 x 10 -7 Shiralkar eta/.  TM 

5 50 1.34 1.41 1.42 1.42 
100 1.77 1.93 1.95 1.96 2.09 

10 50 1.16 1.1 9 1.20 1.20 1.25 
100 1.39 1.47 1.48 1.48 1.57 

* Results obtained with a (32+  O) x 32 gr id  

analytical study of flow in the boundary-layer regime. The 
asymptotic value, in principle, should be the pure Darcy 
Nu because in the limit when Da--*O, the Brinkman- 
extended model reduces to the pure Darcy model. The 
Brinkman results for Da= 1 x 10 -7 differ from the pure 
Darcy results by no more than 6%. Also, the Brinkman 
results are already relatively constant when 
Da<<.l x 10 -4. 

C o n c l u s i o n s  

The problem of natural convective heat transfer in 
rectangular enclosures containing different amounts of 
porous insulation has been investigated. The formulation 
of the transport problem was based on the Brinkman- 
extended Darcy model. Finite-difference results have been 
obtained for heat transfer as a function of the governing 
parameters. It was found that under many circumstances 
there was no need to fill an enclosure completely with a 
porous material to achieve the best insulating effect. This 

implies that a better optimized insulation usage is 
possible. 
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